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Abstract. Excited states in 175Yb, 176Yb and 177Yb were populated via the bombardment of a 176Yb target
with a 750 MeV 136Xe beam. Gamma-ray decays from these states were measured with the AFRODITE
multi-detector spectrometer. The rotational band previously assigned to the ground state of 177Yb has been
reassigned to the first-excited state of 175Yb. A new rotational band based on the ground state of 177Yb
is presented, and the band based on the Kπ = 4− two-quasiparticle state in 176Yb has been identified.
Also a candidate for the rotational band based on the Kπ = 8−, T1/2 = 11.4(3) s two-quasiparticle state
in 176Yb has been found. Comparisons of gK values derived from in-band branching ratios are consistent
with the ν9/2+[624] assignment to the ground state of 177Yb, the ν2{9/2+[624] ⊗ 1/2−[510]} assignment
to the Kπ = 4− state and with the ν2{9/2+[624] ⊗ 7/2−[514]} assignment to the Kπ = 8− metastable
excited state in 176Yb.

PACS. 29.30.Kv X- and γ-ray spectroscopy – 23.20.Lv γ transitions and level energies – 21.10.-k Properties
of nuclei; nuclear energy levels – 27.70.+q 150 ≤ A ≤ 189

1 Introduction

Studies of multi-quasiparticle metastable states in de-
formed atomic nuclei offer unique opportunities to further
our understanding of the interplay of collective behaviour
and individual particle motion in an isolated hadronic
system. In particular, the A ∼ 170–180 mass region of
prolate-deformed nuclei is replete with long-lived multi-
quasiparticle states which arise from configurations that
have large angular-momentum projections, K, onto the
nuclear symmetry axis [1,2]. The characterization of these
states can be eluciated by measuring the properties of
their decay and, where possible, those of the associated
rotational band.
Predictions that energetically favoured high-K multi-

quasiparticle states reside in or beyond the heaviest sta-
ble nuclei in the A = 180 region [2,3] have thrown down
a challenge to experimentalists, since these nuclei can-
not be populated in what might be considered conven-
tional fusion-evaporation reactions. This has forced the
use of different population mechanisms. One approach is

a e-mail: smm@tlabs.ac.za

to use incomplete-fusion reactions [4–10] with relatively
low-mass heavy-ions such as 7Li, 9Be and 11B, which
possess a cluster-type structure from which the reaction
mechanism is a consequence. An alternative approach is
to bombard a target with heavy, relatively neutron-rich
beams at energies in the region of ∼ 10–20% above the
mutual Coulomb barrier to initiate so-called deep inelas-
tic processes whereby states of interest can be populated
in the target (or beam) and target(or beam)-like nuclei.
This latter approach has achieved notable successes in the
identification and characterization of states of interest in a
number of nuclei [11–13] and was employed in the present
investigation. A third way is to fragment a relativistic
heavy beam, such as 1 AGeV 208Pb, and study isomeric
γ-ray decays of mass/charge selected products [14].
The choice of 176Yb as the target in the present study

was partly motivated by the desire to investigate its
Kπ = 8− metastable state [15], since the analogous states
in the heavier isotones exhibit a structural change from a
mixed two-quasiparticle character in 178Hf [16] to an es-
sentially pure two-quasiproton configuration in 180W [15,
17]. Transfer processes were also likely to populate a vari-
ety of hitherto inaccessible states in target-like nuclei.
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2 Experimental details

Beams of 136Xe ions were delivered by the Separated
Sector Cyclotron (SSC) facility [18] of iThemba LABS
at an energy of 750 MeV and a maximum intensity of
∼ 1 pnA. The beams were directed onto an enriched
176Yb target of ∼ 2 mg/cm2 thickness (backed with a
thick layer of Au), which was located at the centre of
the AFRODITE γ-ray spectrometer [19]. Eight Compton-
suppressed clover detectors and seven unsuppressed Low-
Energy Photon Spectrometers (LEPSes) were employed.
At the front of the target, the beam energy was ∼ 15%
above the Coulomb barrier. Events were recorded when
at least three of fifteen AFRODITE HPGe detectors fired
within ∼ 200 ns of one another, of which at least two had
to be clovers, time-referenced to the radio-frequency puls-
ing of the SSC accelerator. Energy and efficiency calibra-
tions of the AFRODITE HPGe detectors were obtained
from the placement of standard 152Eu and 133Ba sources
at the target position.

3 Data analysis and results

The event-by-event data were sorted into Eγ-Eγ cor-
relation matrices with the MTsort package [20] which
were reformatted in order to enable them to be ana-
lyzed with RADWARE [21]. Background-subtracted co-
incidence spectra were generated from placing slices on
the matrices and examples are shown in fig. 1. Ground-
state rotational bands of ytterbium isotopes in the mass
range A = 172 to 177 were observed, with the excep-
tion of 173Yb. Also, the ground-state band of 178Hf was
observed to its 8+ member, as were the first two transi-
tions in the band based on the T1/2 = 4.0 s, K

π = 8−

mixed two-quasiparticle state at 1147 keV [16]. A number
of noteworthy results are listed below and shown in fig. 2:

– A new band based on the ground-state 9/2+[624] neu-
tron in 177Yb was observed.

– The band previously assigned to the ground state of
177Yb [22] is suggested to be based on the first-excited
state in 175Yb (note that the orbital involved in each
case is the 9/2+[624] Nilsson state).

– A band based on a Kπ = 15/2+ three-quasineutron
state in 177Yb has been located via its decay to the
ground-state band.

– The band associated with a Kπ = 4− two-
quasineutron state in 176Yb has been identified.

– A candidate for the band based on the Kπ = 8−,
T1/2 = 11.4(3) s two-quasineutron state in

176Yb has
been found.

4 Discussion

The assignment of transitions to the ν9/2+[624] ground-
state band of 177Yb was consistent with data obtained
from the 176Yb(9Be, 2α)177Yb reaction [23] which corre-
sponded to a single-neutron transfer to the target selected
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Fig. 1. (a) Sum-of-gates spectrum for the 9/2+[624] ground-
state band (g.s.b.) in 177Yb (an ∗ denotes ground-state band
transitions in 176Yb which arise due to slight contamination of
the 187.2 keV gate with the 189.5 keV 4+ → 2+ transition);
inset: higher-energy portion that shows the 911 and 1054 tran-
sitions which decay from the head of theKπ = 15/2+ band (the
202 and 223 keV members are labelled) to the g.s.b.; (b) sum-
of-gates spectrum for the 9/2+[624] first-excited band in 175Yb;
(c) coincidence spectrum selected by the 1069 keV transition
which shows the band associated with the Kπ = 4− state in
176Yb; and (d) sum-of-gates set on the ∆J = 1 cascade transi-
tions for the band possibly associated with the T1/2 = 11.4 s,
Kπ = 8− state in 176Yb. The 381 keV peak from the 4+ → 2+

transition in 136Xe arises from its coincidence with the 197 keV
6+ → 4+ transition. Inset: higher-energy portion that shows
the E2 crossover transitions.

by measuring γ-rays in coincidence with the two break-up
α-particles. The first two ∆J = 1 cascade transitions and
the associated E2 crossover transitions of the 9/2+[624]
band were observed, though these differed from those pre-
viously published [22]. In fact, the 11/2+ and 13/2+ levels
were clearly observed in (d, p) data [24] with energies con-
sistent with those found here. Moreover, the differential
cross-section for the population of the 13/2+ state was
consistent only with an l = 6 transfer. This was also the
case for the corresponding level in 175Yb [25] when popu-
lated via the (d, t) reaction.

Branching ratios, λ, were used to determine the mag-
nitude of mixing ratios, δ, from the standard rotational
model formula, which assumes strong coupling, and hence
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Fig. 2. Level schemes for bands associated with (a) the ν9/2+[624] ground-state, ν7/2−[514] first-excited state and Kπ = 15/2+

three-quasiparticle state in 177Yb; (b) the ν7/2−[514] ground-state and ν9/2+[624] first-excited states in 175Yb; and (c) the
ground state and theKπ = 4− two-quasineutron state in 176Yb, together with the candidate for the band based on theKπ = 8−,
T1/2 = 11.4 s isomer.

Table 1. Branching ratios and (gK − gR) values for the
9/2+[624] band in 177Yb, together with those for the Kπ = 4−

and candidate Kπ = 8− bands in 176Yb.

Jπ Eγ,∆J=1 Eγ,∆J=2 λ |gK − gR|
(a)

(keV) (keV) (exp.)

9/2+[624]

13/2+ 143 266 0.28(10) 0.54(13)

15/2+ 166 309 0.78(15) 0.47(12)

17/2+ 187 353 1.20(27) 0.50(10)

19/2+ 209 397 1.05(25) 0.66(13)

21/2+ 230 439 1.01(27) 0.78(17)

23/2+ 252 483 1.24(38) 0.81(18)

Kπ = 4−

6− 133 244 0.42(10) 0.46(8)

7− 153 286 0.80(20) 0.51(9)

8− 173 326 0.91(44) 0.62(19)

Kπ = 8−

10− 221 419 0.35(10) 0.34(16)

11− 242 462 0.34(10) 0.53(18)

12− 262 504 0.84(23) 0.42(9)

(a) In all cases, the intrinsic quadrupole moment was taken as

Q0 = 7.8(1.3) eb.

that K is well defined:

δ2

1 + δ2
=

2K2(2J − 1)
(J + 1)(J − 1 +K)(J − 1−K)

E5
γ,∆J=1

E5
γ,∆J=2

λ .

The mixing ratios were used to extract the values of
gK − gR for the 9/2

+[624] band in 177Yb (and the bands
in 176Yb, which will be discussed below) shown in table 1
from the formula

gK − gR
Q0

= ±0.933Eγ,∆J=1

δ
√
J2 − 1

.

Lack of statistics prevented an angular-correlation anal-
ysis from which the sign of δ could, in principle, be de-
termined explicitly. If the negative sign is taken, along
with values for the intrinsic quadrupole moment (Q0) of
7.8(1.3) eb (from the 2+ first-excited state in 176Yb [26])
and the rotational g-factor (gR) of 0.3, a weighted average
value of −0.28(5) results, as shown in table 2, which is in
accord with the Nilsson model estimate of −0.24. This also
agrees with the isotone 179Hf where a value of −0.22(4)
was extracted [9] for the 9/2+[624] ground-state band. For
completeness, if the positive sign is taken for (gK − gR), a
value of gK = 0.88(5) results.
The band assigned to the three-quasineutron Kπ =

15/2+ configuration in 177Yb was identified from the de-
cay of the bandhead to the 11/2+ and 13/2+ rotational
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Table 2. Proposed configurations and gK values for bands in 176Yb and 177Yb.

Nucleus Configuration |gK − gR|
(a) gK (expt) gK (Nilsson)

Kπ ν π | . . . |(a) − ve | . . . |(a) + ve ν π

177Yb 9/2+ 9/2+[624] – 0.58(5) −0.28(5)(b) +0.88(5)(b) −0.24 –
176Yb 4− 1/2−[510]⊗ 9/2+[624] – 0.49(6) −0.11(6)(c) +0.87(6)(c) −0.05 –
176Yb 8− 7/2−[514]⊗ 9/2+[624] or 7/2+[404]⊗ 9/2−[514] 0.42(7) −0.04(7)(c) +0.80(7)(c) −0.02 1.00

(a) Weighted averages of values in table 1.

(b) Calculated with gR = 0.30.

(c) Calculated with gR = 0.381(18) (from [26]).

levels associated with the 9/2+[624] ground state. It prob-
ably arises from the ν3{9/2+[624]⊗7/2−[514]⊗1/2−[510]}
configuration, but due to the weakness with which the
band was populated, it was not possible to extract branch-
ing ratios for comparison with the proposed assignment.
The assignment is consistent with the observation of the
Kπ = 4− ν2{1/2−[510]⊗ 9/2+[624]} configuration in the
176Yb core (see discussion below), which suggests that
the Kπ = 15/2+ configuration in 177Yb can be inter-
preted as ν7/2−[514] ⊗ ν2{4−}. This differs with the ob-
servation in the isotone 179Hf of the related Kπ = 17/2+

state [9] which results from parallel coupling of all three
quasiparticle angular momenta. This is consistent with the
Kπ = 5−, rather than 4−, coupling of the ν2{1/2−⊗9/2+}
configuration that is observed in the 178Hf core. Why the
favoured coupling differs between the two N = 106 iso-
tones is not clear.

The band associated with the probable Kπ = 4− two-
quasiparticle state in 176Yb was identified via coincidences
with the 1069 keV transition which depopulates the band-
head to the 4+ member of the ground-state rotational
band. This transition had been identified previously in
the β−-decay of 176Tm [27], and it was also observed in
the 176Yb(9Be, 2αn)176Yb reaction [23]. In the latter data,
a positive A2 coefficient was extracted for the 1069 keV
transition, consistent with those found for the 120.4 and
208.3 keV, ∆J = 0 E1 transitions in 177Hf [6]. The
ground-state spin and parity of 176Tm have been assigned
tentatively as Jπ = (4+), consistent with the π1/2+[411]⊗
ν9/2+[624] configuration and the Gallagher-Moszkowski
rule. It is suggested here that the direct β−-decay to
the bandhead at 1341.7 keV is of first-forbidden ∆l = 1
character, namely π1/2+[411]→ ν1/2−[510]. This is con-
sistent with the absence of any low-lying positive-parity
Ω = 1/2 neutron orbitals. Hence it is proposed that the
Kπ = 4− state arises from the ν2{1/2−[510]⊗ 9/2+[624]}
two-quasineutron configuration. Branching ratios from the
6−, 7−and 8− states are shown in table 1. They were used
to extract a weighted average value of gK = −0.11(6)
shown in table 2, if gR = gR(2

+) = 0.381(18) [28] and
Q0 = 7.8(1.3) eb, which is consistent with a Nilsson model
estimate of gK = −0.05. If the positive sign is adopted for
δ, then a value of gK = 0.87(6) results, which is consistent
to within 2σ with a pure, two-quasiproton singlet config-
uration, for which gK = 1.0. This possibility is, however,
clearly unphysical, since this state is populated directly

in the ground-state β−-decay of 176Tm, so it must have
two-quasineutron character.

The assignment of the band shown in fig. 1(d) to the
Kπ = 8−, T1/2 = 11.4(3) s two-quasiparticle state in
176Yb was based on the following:

– The lack of coincidences between the band members
and known transitions in any of the ytterbium isotopes
that were populated. This is consistent with a band-
head lifetime at least in the µ-second range. It should
be noted that the isomer was clearly populated, since
the 96 keV unstretched E1 decay through which it de-
excites [15] was observed in coincidence with all tran-
sitions of the ground-state band of 176Yb below the 8+

member.
– The band was populated with an intensity similar to
those of the ground-state bands of 177Yb and 175Yb.

– Under the assumption that the band is indeed associ-
ated with the Kπ = 8− state, a weighted average gK
value of −0.04(7) was extracted from the 10−, 11− and
12− branches, as is shown in table 2. This is consistent
with a pure two-quasineutron singlet configuration,
which suggests that any mixing with theKπ = 8− two-
quasiproton configuration is weak compared to that
observed in 178Hf, which, in turn, indicates that the
orbitals involved (7/2+[404] and 9/2−[514]) are suffi-
ciently far from the proton Fermi surface at Z = 70
when compared to Z ≥ 72. For completeness, it should
be noted that a value of gK = 0.80(7) results if the
positive sign is taken for δ.

– The possibility that the band could be associated with
the Kπ = 6+, T1/2 = 0.83 s isomer in

174Yb was dis-
counted, since this structure has recently been iden-
tified to its 14+ member [29], guided by the knowl-
edge that the first cascade transition energy should be
153 keV [30]. It is worth noting that the band assigned
here to the Kπ = 4− two-quasineutron state in 176Yb
is isospectral above the 6− level with the Kπ = 6+

band in 174Yb to within a keV. Inspection of the mu-
tual coincidence intensities in the present data for the
153, 173 and 193 keV subset of transitions suggests
that the Kπ = 6+ in 174Yb was populated to its 9+

member. Also, the 992 keV transition that constitutes
the strongest decay branch from the Kπ = 6+ band-
head was observed in coincidence with the ground-
state band below and including the 6+ → 4+ member.
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5 Summary

In summary, γ-ray coincidence data have been measured
with the AFRODITE array when a thick 176Yb target
was bombarded with a 750 MeV 136Xe beam. A rotational
band based on the 9/2+[624] ground-state orbital in 177Yb
was identified which differs from that published the liter-
ature. The previously published band was reassigned to
the 9/2+[624] first-excited state in 175Yb.
In addition, a new band was observed to decay to the

9/2+[624] band in 177Yb, and it was identified with the
Kπ = 15/2+ ν3{9/2+[624]⊗ 7/2−[514]⊗ 1/2−[510]} con-
figuration.
Furthermore, a new band was identified in 176Yb via

coincidences with the previously known 1069 keV transi-
tion which decays from the bandhead to the 4+ member
of the ground-state band. It is probably associated with
the Kπ = 4−, ν2{9/2+[624]⊗ 1/2−[510]} configuration.
Finally, a new band structure that could not be con-

nected with known states was assigned to the Kπ = 8−,
T1/2 = 11.4(3) s isomer in

176Yb. Branching ratios were
extracted from which a value gK = −0.04(7) was derived,
which is consistent with the ν2{9/2+[624] ⊗ 7/2−[514]}
two-quasineutron configuration.

The staff of the Accelerator Group at iThemba LABS are
thanked for the beam delivery and support in general.
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